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Topics to be covered

1. 2D low-pass filters in space domain (smoothing)

2. 2D high-pass filters in space domain (sharpening)

3. Use of derivatives for edge enhancement

4. High-boost filtering

5. Non-linear space domain filters

6. The image histogram
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Reading

• Gonzalez and Woods pp. 112-142, 88-108

Optional additional reading

• Bracewell pp. 267-287

• Jain pp. 235-255, 347-353
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Filtering in the space domain

We will first consider filters that can be implemented using the

convolution operator (linear spatially invariant filters).

f(x, y) g(x, y)h(x, y)

• These filters are completely described by their point spread function
h(x, y).

• Discrete space domain LSI filters are often called “masks” or
“convolution masks”.
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Filtering in the space domain: Five minute class exercise

We have already seen that a smoothing filter may be implemented as an

“averaging mask” such as:
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Consulting only other students, try to come up with masks to perform

the following:

1. Image sharpening (high-pass filter)

2. Horizontal edge enhancement

3. Vertical edge enhancement
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Low-pass spatial filters

We will consider the Gaussian low-pass spatial filter. The true

Gaussian filter has infinite support, and so is not practical to

implement. Its PSF is given by:

h(x, y) =
1

2πσ2
e−(x2+y2)/σ2

Note that this PSF is separable:

h(x, y) = h′(x)h′(y) =
1√
2πσ2

e−x
2/σ2 × 1√

2πσ2
e−y

2/σ2

This means that the Gaussian filter can be implemented by

applying two 1D Gaussian filters.
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Low-pass Gaussian spatial filters

In practical image processing, we need filters of finite length. The

binomial approximation is very useful for making spatial filters

based on Gaussians. Using this approximation, the function:

h′(x) =
1√
2πσ2

e−x
2/σ2

may be approximated by the Nth row of Pascal’s triangle, where

N = 4σ2 + 1. The first few rows of Pascal’s triangle are:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
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Low-pass Gaussian spatial filters

Row N for N > 2 of Pascal’s triangle may be created by convolving

the vector:
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with itself N − 2 times, and then normalizing by 2−(N−1). For

example row 4, which gives the 4-point Gaussian filter, may be

calculated as follows:
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Low-pass Gaussian spatial filters: 2D implementation.

Let the binomial approximation PSF h[n] form the elements of the

column vector h. The 2D convolution is implemented by:

1. Performing the 2D convolution:

g′[m, n] = h[n] ∗ f [m, n]

This is equivalent to convolving the image with the vector h using a

2D convolution algorithm.

2. Performing the 2D convolution:

g[m, n] = h[m] ∗ g′[m, n]

This is equivalent to convolving the image with the vector hT using

a 2D convolution algorithm.
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Low-pass Gaussian spatial filters: 2D implementation

As formulated above, the filter will smooth equally in x and y directions.

However, it is possible to use filters of different length in x and y

directions. The effective 2D filter can then be found by taking the outer

product:

H = h1h
T
2

where h1 is the vertical smoothing kernel and h2 is the horizontal

smoothing kernel. For example:

1
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Would this filter be better suited for hiding horizontally or vertically

oriented wrinkles in a photograph?
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Low-pass Gaussian spatial filters: Demo

We will attempt to remove the horizontal furrows from this brow

using a Gaussian LPF:

Original image
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Low-pass Gaussian spatial filters: Demo

We will try an 8 row × 1 column, a 1 row × 8 column and an 8 row

× 8 column Gaussian LPF. Which filter was used on each of the

following images?
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Low-pass Gaussian spatial filters: Demo

Filtered with ________ Gaussian LPF
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Low-pass Gaussian spatial filters: Demo

Filtered with ________ Gaussian LPF
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Low-pass Gaussian spatial filters: Demo

Filtered with ________ Gaussian LPF

15

High-pass Gaussian spatial filters

Recall that a high-pass filter Hh(u, v) could be obtained from a

low-pass filter prototype Hl(u, v) in the frequency domain via the

equation:

Hh(u, v) = 1−Hl(u, v)

Taking the inverse FT yields:

hh(x, y) = δ(x, y)− hl(x, y)

In practice, we obtain a high-pass Gaussian filter by taking the

negative of the kernel and adding 1 to its central element. This is

easier when the kernel is of odd length.
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High-pass Gaussian spatial filters: Demo

An 8× 1 Gaussian HPF was applied to the original image:

Filtered with high−pass 8x1 Gaussian HPF

Note the exaggerated edges. This filter attenuates low frequencies too

effectively for use as a “cosmetic” image sharpening filter.
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Detail-enhancing Gaussian spatial filters: Demo

If we add the original image to the high-pass filtered image, we

restore the low frequency content and add the amplified detail.

Finally we have an effective detail-enhancing filter:

gsharp[m,n] = f [m,n] ∗ hh[m,n] + f [m,n]

When applied to the image, we get:
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Detail-enhancing Gaussian spatial filters: Demo

Filtered with high−pass 8x1 Gaussian HPF + original

Note that both detail and noise are amplified.
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Detail enhancing filters based on the Laplacian

The Laplacian is the simplest isotropic derivative operator:

∇2f(x, y) =
∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2

When applying the Laplacian to an image we expect the value of the

Laplacian to be sensitive to the rate of change of luminance in an image.

Consequently the Laplacian

1. Will be zero inside areas with constant luminance.

2. Will be zero inside areas with constantly changing luminance (grey

level ramps).

3. Will strongly emphasize features of small size, for example, isolated

bright points and thin lines i.e., fine image detail

Since the operators based on the first derivative do not possess all of

these desirable properties, we will consider only second order sharpening

filters.
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Detail enhancing filters based on the Laplacian

In the discrete space domain, we must approximate the derivative

operator using differences. We have in the x direction:

Lx[m, n] = f [m+ 1, n] + f [m− 1, n]− 2f [m, n]

and in the y direction:

Ly[m, n] = f [m, n+ 1] + f [m, n− 1]− 2f [m, n]

Adding these, we get a discretization of the Laplacian:

Lxy[m, n] = f [m+1, n]+ f [m− 1, n]+ f [m, n+1]+ f [m, n− 1]− 4f [m, n]
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Detail enhancing filters based on the Laplacian

This is not a very good approximation because it is only isotropic along

the x and y axes. In square pixel images, detail oriented at 45 degrees

should also be emphasized. An improved mask is obtained by rotating

the mask as presently defined:









0 1 0

1 −4 1

0 1 0









by 45 degrees, and then summing the masks. A frequently used mask is:









1 −2 1

−2 4 −2
1 −2 1









The Laplacian is generally a noisy operator. Usually a multiple of the

original image is added so that low frequency content is present.
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Detail enhancing filters based on the Laplacian: Demo

Original image

Image courtesy NASA.
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Detail enhancing filters based on the Laplacian: Demo

Filtered with Laplacian mask + original image
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Detail enhancing filters: High-boost filtering

Detail can be enhanced by subtracting a smoothed version of an image

from a multiple of the image:

fsharp(x, y) = Af(x, y)− fsmooth(x, y)

When A = 1 this is known as unsharp masking.
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High-boost filter demo

1 x image minus 3x3 Gaussian LPF’d image 1.25 x image minus 3x3 Gaussian LPF’d image
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Practical image processing: 5 minute class problem

Consider the following image. It is employed to prevent computer scripts

from logging in to a website. A user must read the text in the corrupted

image and enter it at a prompt to verify that a real person is using the

site. By the end of this course, you should be able to write a program

that often succeeds at guessing the word.

What would your first steps be in preparing this image so that the text

can be read by a computer?

Original image
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Notes:
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One approach to despeckling

Filtered with 3x3 Gaussian LPF

Smoothed image thresholded at 0.75 of max. intensity
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Non-linear filtering: Thresholding

When we threshold an image, we map an interval of gray level values to

one, and all the rest to zero:

ft(x, y) = 1 for Il ≤ f(x, y) ≤ Ih

= 0 otherwise

where Ih is the upper level threshold and Il is the lower threshold. In the

previous example, Il = 0.75max(f(x, y)) and Ih = 1.
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Non-linear filtering: Order statistics filters

• Order statistics filters rank the intensities of pixels within a window.

• The user specifies the rank of the pixel whose value will be chosen by the

filter.

• This value is then substituted for the pixel at the center of the window.

• The window moves over every point in the image.

• The median filter substitutes the value of the pixel that is in the middle

of the list of pixels in the window that has been sorted according to

intensity.

• The min filter takes the value of the lowest intensity pixel.

• The max filter takes the value of the highest intensity pixel.

• In general, the value of the pixel at any percentile rank may be selected.

Order-statistics filters are good for removing impulse noise also called salt

and pepper noise. It consists of randomly located dots of the same or similar

intensities.
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Despeckling with median filter

3x3 median filtered image

Median filtered image thresholded at 0.75 of max. intensity

What are the pros and cons of using the median filter?
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Despeckling with median filter: Demo with true salt and

pepper noise

Image contaminated by salt and pepper noise

33

Despeckling with median filter: Demo with true salt and

pepper noise

Image smoothed with 3x3 Gaussian LPF
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Despeckling with median filter: Demo with true salt and

pepper noise

Filtered with 3x3 median filter
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Despeckling with median filter

• The Gaussian LPF does not improve the ability to resolve obscured detail

in the image. It merely smears out the dots and blurs true detail.

• The median filter is far more effective at removing the dots than a linear

filter. In fact, the previously illegible text on the name tag becomes almost

legible. The median filter tends to “eat away” a little at fine features such

as text.

• Note that while linear filters can be applied in any order, non-linear filters

cannot. What would happen if we applied the median filter to the

Gaussian-smoothed image?

• Why do you think the median filter did not work as well on the “vote”

text as on the photograph?

• Why did the LPF not do too badly on the “vote” text?
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The Image Histogram

• The image histogram tells us how many pixels occur at each gray
level value within an image.

• So that we can find the histogram of an image with continuous
intensity values, we normally map ranges of intensities into bins.

• Let Imax represent the maximum intensity value in an image and

Imin be slighty smaller than the lowest value. We calculate the value

of the lth bin of a histogram with L bins as:

h[l] = |Il| l = 0, 1, . . . , (L− 1)
Il , {m, n |

l × (Imax − Imin)/L < f [m, n] ≤ (l + 1)× (Imax − Imin)/L}

Where |Il| is the number of elements in, or cardinality of, the set Il.
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The Image Histogram

• The histogram does not depend on where pixels are in an image.

• Example: An image has pixel values between 0 and 1. We wish to
histogram the image into 5 bins. Then the gray level limits of each

bin are:

I0 : [0.0, 0.2]

I1 : (0.2, 0.4]

I2 : (0.4, 0.6]

I3 : (0.6, 0.8]

I4 : (0.8, 1.0]
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The Image Histogram: Example

• Say an image contains the pixel values:

I = {0.1, 0.93, 0.3, 0.1, 1.0, 0.2, 0.8, 0.72, 0.1, 0.4, 0.35, 0.412 0.95}

Then the bins contain the elements:

I0 : {0.1, 0.1, 0.1 0.2}

I1 : {0.3, , 0.4]

I2 : {0.412}

I3 : { , 0.8}

I4 : {0.93, 1.0 , 0.95}

and the set cardinalities (histogram bin contents) are:

h[0] = |I0| = 4

h[1] = |I1| =

h[2] = |I2| = 1

h[3] = |I3| =

h[4] = |I4| = 3
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The Image Histogram: Example

The resulting histogram is usually plotted as a bar graph:
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Histogram equalization

• Most often, images do not make use of the full grayscale. This can
make visualization difficult.

• One way of improving contrast is to equalize the histogram. This
entails modifying the pixel values so that all bins contain

roughly the same number of pixels.
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Histogram equalization: Example
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Histogram equalization: Example
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We see that image is only “using” a minority of the gray levels.
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Histogram equalization: Example
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Histogram equalization: Example
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The image pixel values are now spread far more evenly among the bins.

Ideally, the histogram should be flat.
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Histogram equalization: Theory

• First, we look at the cumulative histogram of the original image:
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• We can imagine that if the cumulative histogram increased linearly,
the pixels would be spread equally between the bins.
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Histogram equalization: Theory

• The way to execute this transformation is to use the normalized
cumulative histogram as a transformation function:
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• We see that gray level intervals with the most pixels (where the
count increases the fastest) will be mapped over many output gray

levels.
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Histogram equalization: Theory

• A look at the cumulative histogram of the equalized image shows
the effect of the transformation on the histogram:
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Histogram equalization: Theory

• The equation of the line defining the hypotenuse of the triangle is:

c(I) =
|I|

(Imax − Imin)
I

where I is the pixel intensity (histogram abscissa)

• Note that the derivative of c(I) with respect to I is:

|I|
(Imax − Imin)

= 560× 833/256 ≈ 1822

and that this is the height of the (ideal) equalized histogram.
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Histogram equalization: Example
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Histogram specification: Theory

We can generalize this to allow us to specify a new histogram for an

image.

1. Choose a histogram function hs(I).

2. Integrate this function to get c′s(I). The constant of integration

should be chosen such that c′s(Imin) = 0.

3. Scale c′s(I) to create cs(I) that has a final value equal to the

maximum intensity value Imax.

4. Calculate the cumulative histogram of the image ci(I).

5. For a pixel of intensity I, look up ci(I).

6. Look up ci(I) on the ordinate axis of cs(I), and find the

corresponding output gray level on the abscissa axis of cs(I).
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Histogram specification: Example

• For an image with intensities from 0 to 255, we specify the
histogram:

hs(I) =
1

256
(I − 127)2;
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Histogram specification: Example

• The integral is

c′s(I) =
1

3× 256 (I − 127)
3 + 2667,

which has a final value of ≈ 5398. Since we have Imax = 255:

cs(I) =

[

1

3× 256 (I − 127)
3 + 2667

]

× 255

5398
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Histogram specification: Example
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Histogram specification: Example

The modified image looks like this:
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Histogram specification: Example

Finally, we check that the histogram of the modified image looks

something like what we asked for:
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Histogram specification: Example
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Histogram specification: Rigorous theory

Note: The following material is not examinable. It is included for

completeness.

• When the histogram is normalized to sum to unity, it gives an

approximation to the continuous probability density function (pdf) of the

image gray level values f(i). Here i is a gray level value.

• The cumulative distribution function (cdf) is defined as:

FI(i) , P(I ≤ i) =

∫ i

−∞

f(q)dq

where I is the gray level random variable. The cdf gives the probability

that a pixel gray level will fall at a value less that the argument i. As a

consequence, FI(i) has values from 0 to 1 and is strictly monotonically

increasing.

• We will now show that the random variable:

Y = FI(I)

is uniformly distrubuted in the interval (0, 1).
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Histogram specification: Rigorous theory

• Let g(i) be a function that satisfies FI(g(i)) = i. Because FI(i) is

strictly monotonically increasing and continuous, it uniquely defines

g(i) for every i in (0, 1).

• The function g(·) is called the inverse function of FI(·) and can be
denoted as:

g(i) = F−1

I (i)

• For an inverse function, the relation:

g(FI(i)) = FI(g(i)) = i

holds.

• Intuitively, finding the value of the inverse of a function involves
choosing a value for the ordinate of the original function and finding

the corresponding abscissa value. If the original function is

continuous and strictly monotonic, there will be only one abscissa

value for each ordinate value.
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Histogram specification: Rigorous theory

• Properly behaved cdf’s are always continuous and strictly
monotonically increasing and so this “lookup” operation always

yields a single abscissa value.

• Proof that y is uniformly distributed: By definition of the cdf:

P(Y ≤ y) = P(FI(I) ≤ y) = P(g(FI(I)) ≤ g(y))

= P(I ≤ g(y)) = P(I ≤ i) = F (g(y)) = y.

• We can translate the key idea of this proof, that:

P(Y ≤ y) = P(I ≤ i)

into words as:

“The probability of the cdf being less than or equal to a certain

value y is the same as the probability that the original random

variable I is less than or equal to i, where i is the value at which the

cdf was equal to y.”
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Histogram specification: Rigorous theory

• The proof tells us that probability that random variable Y falls

below a value y is that value y. The cdf of Y is thus a 45 degree

ramp, and the pdf is therefore uniform on the internal [0, 1].

• As a consequence, any continuous random variable (rv) with the
well-behaved cdf can be transformed to a uniform rv by its cdf FI(i).

• This uniform rv y can then be transformed to assume the original

distribution of f(i) using the inverse function g(i) = F−1

I (i).

• Let s(z) be another distribution with a well-behaved cdf SZ(z).

Then its inverse function S−1

Z (z) will transform any uniform rv to

have a pdf of s(z)

• In histogram equalization we perform only one mapping, from an

rv with pdf f(i) to a uniform rv y.

• In histogram specification we perform two mappings, from an rv

with pdf f(i) to a uniform rv y, and then from this uniform rv to a

specified distribution s(z) via the inverse function for z.
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Histogram specification: Illustrating the theory

• Let us consider an arbitrary probability density function:

f(i) = 1

4.5
(−i2 + 2.25) i ∈ [−1.5, 1.5]

= 0 otherwise

• The corresponding cumulative distribution function is then the
integral of this:

FI(i) = 1

4.5
(−i3/3 + 2.25i) + 0.5 i ∈ [−1.5, 1.5]

= 0 i < −1.5
= 1 i > 1.5
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Histogram specification: Illustrating the theory
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Histogram specification: Illustrating the theory

Now we want to verify that the values Y = FI(I) are uniformly

distributed between zero and one. The easiest way to do this is to show

that the cdf of Y is a ramp with a slope of 1. In other words that

FY (y) = y.

• Now FY (y) is defined as the probability that the random variable Y

is less than a value y or as:

FY (y) = P (Y ≤ y)

• In the previous plot of the cdf, we have marked a value
y = FI(i) = 0.25 using a horizontal dotted line. We ask the question

“what is the probability that Y falls below 0.25?”.

• By looking at the figures, we find that FI(i) reaches 0.25 when

i ≈ −0.521. We can see intuitively that Y = FI(I) has the

same probability of being less than or equal to 0.25 as I has

of being less than or equal to −0.521. THIS IS THE KEY

REALIZATION.
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Histogram specification: Illustrating the theory

• This probability is very easy to evaluate, since:

P (I ≤ i) = FI(i) = FI(−0.521) = 0.25

• Since our chosen y = 0.25 we have thus verified that:

FY (y) = P (Y ≤ y) = y

at one point.

• When we realize that looking up the i = −0.521 value corresponding
to y = 0.25 was simply evaluating the inverse function:

i = F−1

I (y) = F−1

I (0.25) = −0.521

The proof tells us that this always holds because

P (I ≤ i) = FI(i) = FI(F
−1

I (y)) = y
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Histogram specification: Illustrating the theory

We can look at another illustrative example where it is easy to find the

inverse function g(i) = F−1

I explicitly.

• Consider the pdf:

f(i) = 2i i ∈ [0, 1]
= 0 otherwise

• The corresponding cumulative distribution function is then the
integral of this:

FI(i) = i2 i ∈ [0, 1]
= 0 otherwise
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Histogram specification: Illustrating the theory
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Histogram specification: Illustrating the theory

Again, we wish to verify that the values Y = FI(I) are uniformly

distributed between zero and one. Again, we do this by showing that the

cdf of Y is a ramp with a slope of 1 (i.e. FY (y) = y)

• Now FY (y) is defined as the probability that the random variable Y

is less than a value y or as:

FY (y) = P (Y ≤ y)

• In the previous plot of the cdf, we have marked a value
y = FI(i) = 0.25 using a horizontal dotted line. We ask the question

“what is the probability that Y falls below 0.25?”.

• This time, we can determine explicitly by solving FI(i) = i2 for i

that:

g(i) = F−1

I (y) =
√

i

so

g(0.25) = F−1

I (0.25) =
√
0.25 = 0.5.
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Histogram specification: Illustrating the theory

and

FI(g(i)) = 0.5
2 = 0.25 = y

• Our general proof was:

P(Y ≤ y) = P(FI(I) ≤ y) = P(g(FI(I)) ≤ g(y))

= P(I ≤ g(y)) = P(I ≤ i) = F (g(y)) = y.

• To gain intuition, we can subsititute in our concrete example:

P(Y ≤ y) = P(FI(I) ≤ y) = P(I2 ≤ y) = P(
√

I2 ≤ √y)

= P(I ≤ √y) = P(I ≤ i) = F (i) = y.
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